skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shah, Archit"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2026
  2. Free, publicly-accessible full text available August 1, 2026
  3. Abstract Josephson-CMOS hybrid memory leverages the high speed and low power operation of single-flux quantum logic and the high integration densities of CMOS technology. One of the commonly used type of interface circuits in Josephson-CMOS memory is a Suzuki stack, which is a latching high-voltage driver circuit. Suzuki stack circuits are typically powered by an AC bias voltage that has several limitations such as synchronization and coupling effects. To address these issues, a novel DC-biased Suzuki stack circuit is proposed in this paper. As compared to a conventional AC-biased Suzuki stack circuit, the proposed DC-biased design can provide similar output voltage levels and parameter margins, approximately two times higher operating frequency, and three orders of magnitude lower heat load of bias cables. 
    more » « less